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ABSTRACT: We consider the design of the revenue maximizing mechanism for a seller with
a fixed capacity of C units selling over T periods to buyers who arrive over time. The buy-
ers have single unit demand and multi-dimensional private information– both their value
for the object and the deadline by which they must make a purchase are unknown to the
seller. This contrasts with previous work where buyers have single dimensional private
information– deadlines are publicly observed and only values are private. Here, the op-
timal mechanism can be computed by running a dynamic stochastic knapsack algorithm.
However, these mechanisms are only optimal with private deadlines when the calculated
allocation rule is monotone– buyers with higher values and later deadlines should be allo-
cated with higher probability. Such monotonicity only arises in very special cases.

By contrast, in the classic static environment of Myerson [5] monotonicity is only vi-
olated for ‘irregular’ value distributions. Myerson characterizes the optimal mechanism
by a procedure he calls ‘ironing.’ We characterize the optimal mechanism in our general
dynamic environment by providing the dynamic counterpart of ironing. We show that
only a subset of the monotonicity constraints can bind in a solution of the seller’s dynamic
programming problem. The optimal mechanism can be characterized by ‘relaxing’ these
constraints with their appropriate dual multiplier. Further, the optimal mechanism can be
implemented by a series of posted prices followed by a ‘biased’ auction in the final pe-
riod where buyers have the auction biased in their favor depending on their arrival time.
Our theoretical characterization complements the existing computational approaches for
ironing in these settings (e.g. Parkes et al. [8]).
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DEB AND PAI

1. INTRODUCTION

Sellers often have fixed deadlines by which they must sell to buyers who arrive and leave the
market at different instants. Consider, for example, an airline selling tickets for an upcoming
flight or a hotel renting rooms for a future date. In both cases, there is a fixed capacity and a date
beyond which this capacity has no value. In such an environment, sellers aiming to maximize
profits must solve a dynamic problem: they could sell to buyers currently in the market and ‘lock
in’ some revenue, or keep the capacity for buyers who may arrive in the future by which time the
currently present buyers may have left. Variants of this problem have been studied in the opera-
tions research literature (where it is known as the ‘single leg, multi-period revenue management
problem’) and, more recently, in the dynamic mechanism design literature.

Here, we focus on studying the seller optimal mechanism when buyers have multidimensional
private information. Specifically, we allow buyers to privately know both how much they value
the good and how long they plan to stay in the market. Consider the airline ticket example in
which some travelers may be willing to delay their purchase for a potentially better deal. For
others, the flight may be a part of a larger trip and hence may choose to change plans and not make
a purchase if tickets are currently too expensive. The seller’s mechanism must therefore take this
into account. This realistic additional aspect of private information considerably complicates the
seller’s dynamic revenue management problem and is avoided by the majority of the literature.

IRONING. To contextualize our results, we first describe a procedure of mechanism design called
‘ironing’. The celebrated paper of Myerson [5] studies revenue maximizing mechanisms for a
seller of a single unit of a good to buyers who privately know their values. In this paper, there
are two key insights. The first, the Revelation Principle, reduces the problem to one in which
each agent truthfully reveals his type to the seller (as opposed to a bid) and is given incentives to
do so. The second insight is the notion of ‘virtual value’- this, roughly speaking, is the buyer’s
value minus the cost of the incentives to get him to reveal his type. Myerson’s analysis shows
that revenue maximization is the same as maximizing efficiency over virtual values subject to a
monotonicity constraint. This constraint requires that higher value types must win the good more
often in expectation. Myerson therefore considers two cases. The first, which he calls the ‘regular
case’ involves an assumption on the distribution of values such that the monotonicity constraint
is satisfied by the solution to the problem of maximizing virtual efficiency.1 In this case, a knap-
sack algorithm where buyers’ weights are given by their virtual values can compute the optimal
allocation rule.

The other case is more involved. Myerson defines an ‘ironing’ procedure which modifies the
virtual values to restore monotonicity.2 The ironed virtual values can then be used to compute the
optimal allocation rule via the same knapsack algorithm.

1Formally, the condition is that the virtual values, v− 1−F(v)
f (v) , be non-decreasing in v, where f is the density and F is

the CDF of the distribution.
2At a technical level, it adds to the virtual value of a buyer the value of the dual variable corresponding to the mono-
tonicity constraint.
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DYNAMIC MECHANISM DESIGN AND DYNAMIC IRONING. Various results in dynamic mecha-
nism design follow the same path in a dynamic setting.3 The approach of most papers in this field
can be described thus. First, an appeal to a generalization of the revelation principle results in an
analogous reduction as the static case. Analysis of the resulting dynamic problem reveals a notion
of virtual value for the setting at hand. It can therefore be shown that revenue maximization boils
down to maximizing virtual efficiency subject to an appropriate ‘monotonicity’ constraint. It is
here that the duality ends. There are normally no conditions one can impose on the distribution
of buyer values to ensure that this monotonicity constraint is satisfied. Further, unlike the static
Myerson setting, there is no counterpart to the ironing procedure if monotonicity is violated.

With no guidance from economic theory, progress has been made in computational approaches
in interesting dynamic settings— see for example Constantin and Parkes [3], Parkes [7] and Parkes
and Duong [8]. These papers restore monotonicity via computational methods (see the discussion
in Section 4). While they can perform well in practice they are provably suboptimal. Our the-
oretical results complement this approach and provide a benchmark for them to be measured
against. Moreover, our methodology provides an avenue for the design of computational ap-
proaches which can yield higher revenue (again, see discussion in Section 4).

OVERVIEW OF MODEL AND RESULTS. We consider a seller who has a finite capacity C to sell
over T periods to buyers who arrive over time. Specifically, one buyer arrives in each period,
and buyers have a privately known value for a unit and, in addition, privately know whether
they are impatient (only present in that period) or patient (present till the final period). The model,
arrival processes, and value distributions are all common knowledge among buyers and the seller.
Further, at the time of arrival, a buyer knows all past reports made to and allocation decisions
made by the mechanism. It is in this setting that we derive the mechanism that maximizes the
seller’s expected revenue, with a Bayes-Nash solution concept.

In a simpler model where buyer’s patience is publicly known (we will refer to this as the public
information case), the seller’s optimal mechanism is easier to characterize. She offers a posted
price in each period to impatient buyers arriving in that period, while all patient buyers compete
in a standard second price auction with a reserve price. Of course, this may not remain incen-
tive compatible when, in addition, the buyers’ patience levels are private, and therefore ironing
is required. Ironing in environments with multi dimensional private information typically leads
to very complex contracts often involving lotteries. Surprisingly, our main result shows that the
optimal mechanism in our environment still takes a surprisingly simple form and is therefore prac-
tical. There are two distortions over the mechanism we describe above. First, we show that (under
mild regularity conditions), the seller still offers posted prices to impatient buyers. However, these
posted prices are weakly higher than the public patience case. This makes it less attractive for a
patient buyer to misreport herself as impatient. Second, patient buyers are still invited to bid for
an auction that is conducted in the final period. However, this auction is biased and need not
award the good to the highest bidder– benefits are provided to early arriving patient buyers for
reporting their patience truthfully by distorting the auction in their favor.

3A comprehensive survey of the field of dynamic mechanism design is beyond the scope of this paper. We refer the
interested reader to excellent surveys by Bergemann and Said [1] and Vohra [9].
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In the public deadline benchmark the optimal mechanism is a dynamic stochastic knapsack
algorithm. It allocates a unit if the ‘virtual value’ of the buyer exceeds the expected incremental
revenue from 1 unit in the future (computed by dynamic programming). In the private deadline
case, for each period t, and each history of what has transpired up to t− 1, ht−1, the mechanism
assigns a penalty/bonus η(ht−1). The same dynamic knapsack mechanism is run, however impa-
tient buyers’ virtual values in that period are penalized by η(ht−1), while patient buyers in that
period get a bonus of η(ht−1). This η is the dual variable for the incentive compatibility constraint
corresponding to a patient buyer arriving in period t with the highest possible value misreporting
as impatient.

RELATED LITERATURE. This paper is closely related to three main papers. The first is the paper
of Pai & Vohra [6]. This paper considers a generalization of the model above– multiple buyers
may arrive in each period, and a buyer may have any private deadline between the current period
and the final period. However in this more general setting, they are only able to provide a limited
characterization of the optimal mechanism. Specifically, and in contrast with this work, they focus
on the case where the additional private information on departures plays no role in the optimal
mechanism. The second paper is a recent work by Mierendorff [4]. This paper characterizes the
optimal mechanism in the same setting as ours, but restricted to 2 periods. Our model is thus a
special case of [6] and a generalization of [4]. Like [6] and unlike [4], we consider a model with
discrete types. This allows for less technical proofs than those of the continuum-of-types-case.
Additionally, the discrete type setting is more amenable to algorithmic analysis.

Finally, Board & Skrzypacz [2] consider a continuous time setting where buyers with private
value, but commonly known identical discount rates, arrive over time. They show the optimal
mechanism for the seller can be implemented by a sequence of posted prices over time, coupled
with an auction at the end. By contrast, we show that when buyers have additional private in-
formation on their level of patience (the counterpart of discounting in their model), the optimal
mechanism involves distorting the auction in favor of more patient buyers.

2. MODEL & NOTATION

There is a seller with C units of an indivisible good to be sold by time T. Time is discrete.

BUYER TYPE SPACE: Buyers arrive and leave over time. A buyer’s type is a 3-tuple with the
following components:

(1) v ∈ V is the valuation of the agent for one unit of the good. V, the set of all possible
valuations is a finite set of positive numbers. While V can be arbitrarily fine, for economy
of notation, we consider V = {1, 2, . . . , v} (which is without loss of generality). Buyers are
risk neutral.4

(2) t ≤ T is the time that the buyer learns of his demand for unit, we will also call it his entry/
arrival time.

4This implies that a buyer with value v who receives the good with probability A making a payment P gets utility
Av− P.
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IRONING IN DYNAMIC REVENUE MANAGEMENT

(3) The third component x, is either i, denoting that the buyer is impatient (present only for
the entry period) or p, denoting that he is patient and willing to wait till the last period. An
impatient buyer only values a good he receives in the period of his arrival, while a patient
buyer’s value for the good does not depend on when he receives it.

The set of possible types who arrive in period t is denoted by the set Tt = V × {t} × {i, p}. We
abuse notation slightly and define v(rt), and x(rt) as the value and patience level corresponding
to a type rt ∈ Tt. We can partition the set Tt into patient types T

p
t and impatient types Ti

t.

DISTRIBUTION OVER TYPES: We assume that in every period t one buyer arrives. It is easy to
accommodate probabilistic arrivals in our model, we do not do so here to reduce notation. Further,
thinking of the discrete time periods as an approximation to ‘real’ time, it seems reasonable to
assume that no two buyers arrive at the same discrete interval if T is large.

A period t arriving buyer is patient/impatient with probability ρ
p
t , ρi

t where ρ
p
t + ρi

t = 1. A
patient period t buyer has a private value drawn from a distribution Fp

t (·) and with density f p
t (·).

An impatient buyer has corresponding distribution Fi
t (·) wish density f i

t (·). In wha , we maintain
the following regularity conditions on these distributions:

DEFINITION 1 (Regularity Conditions). We assume the following regularity conditions on the distribu-
tion of buyer’s types:

(1) Monotone Hazard rate: Patient buyers arriving in any period have a distribution of values with
increasing hazard rate, i.e.

f p
t (v)

1− Fp
t (v)

is increasing in v, ∀t.

(2) Decreasing Density: Patient buyers arriving in any period have a distribution of values with de-
creasing density, i.e. f p

t (v).
(3) Concave revenue function: Impatient buyers arriving in any period have a distribution of values

such that v(1− Fi
t (v)) is concave in v (formally, has decreasing differences).

Condition 1 is a standard assumption in the mechanism design literature and it is satisfied by
almost all commonly used distributions. Condition 2 is employed for technical reasons, and has
been seen before in several multidimensional settings. Finally, Condition 3 is simply the discrete
analog of requiring the monopoly profit from impatient buyers to be concave in the price. This
is a ubiquitous assumption in the pricing literature. The latter condition is the only one required
for our results. If either of the former two conditions is not satisfied, the solution can still be
characterized by additional (static) ironing in the auction for the final period.

THE MECHANISM. We invoke the revelation principle which allows us to restrict attention to
direct revelation mechanisms. Put differently, this implies that it is without loss of generality for
the seller to ask each arriving buyer to reveal her type. In each period, all past activity is made
known to the arriving buyer. In other words, at the time of arrival a buyer knows his own type,
past arrivals, and past actions by previous buyers and the mechanism. At each time period, the
mechanism decides who will be allocated the good and the payments made by each agent as a
function of all previous reports. We now define the mechanism formally.
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We begin by defining the relevant histories for the mechanism. We use the variable cτ,t to denote
whether a buyer who arrived at period τ ≤ t has received a good by period t. We set cτ,t = 1 if
such an allocation did occur and the if it did not we set cτ,t = 0. Each arriving buyer is asked
to report her type rt ∈ Tt (of course, the mechanism needs to provide incentives for the buyer to
report her type truthfully).

There are two classes of relevant histories for our mechanism. History ht is all reports up to and
including t, and all allocation decisions up to period t− 1. History ht is the history of all reports
and allocations up to and including period t. Formally:

ht = ((c1,t, . . . , ct,t), (r1, . . . , rt)),

ht = (ht−1, rt).

In a slight abuse of notation, we use cτ,t(ht) to denote whether in history ht a buyer arriving in τ is
allocated at period t or before. Similarly, we use rτ(ht) to denote the announced type of the buyer
who arrived in period τ ≤ t according to history ht. We will let Ht denote the set of all feasible
‘beginning of period t’ histories , and Ht denote all feasible ‘end of period t’ histories.

The seller announces a mechanism before the first period. A mechanism is a set of functions

at′,t : Ht → [0, 1], $t′,t : Ht → R.

In words, at′,t(ht) is the probability with which the buyer who arrived in period t′ ≤ t and reported
rt′(ht) expects to get the good in period t when history ht has realized. Similarly $t′,t(ht) is the
amount that this buyer has to pay in period t. Since buyers are risk neutral, they only care about
their expected (interim) allocation probabilities and their expected payments, where expectations are
taken over the truthful reports of all other players. We denote these by

At(ht−1, rt) =
T

∑
τ=t

Ehτ
[at,τ(hτ)|(ht−1, rt)],

Pt(ht−1, rt) =
T

∑
τ=t

Ehτ
[$t,τ(hτ)|(ht−1, rt)].

Notice that the above expectations are conditioned on the current history (ht−1, rt). Thus the ex-
pected utility of a buyer arriving in period t with value vt who makes a report rt is vt At(ht−1, rt)−
Pt(ht−1, rt). Importantly for the seller, the choice of a’s also determines the distribution of future
histories that realize, by changing how many units remain to be allotted in subsequent periods.
SELLER’S PROBLEM. The seller’s problem is to maximize expected revenue subject to a few con-
straints. The first few are relatively straightforward. Individual rationality (IR) requires that the
expected profit from participating is non-negative:

v(rt)At(ht−1, rt)− Pt(ht−1, rt) ≥ 0 ∀rt ∈ Tt, ∀ht−1. (IR)

The next feasibility constraint simply requires that, at all histories, the seller can never assign more
goods than his remaining inventory:

t

∑
τ=1

aτ,t(ht−1, rt) ≤ C−
t−1

∑
τ=1

cτ,t−1(ht−1) ∀rt ∈ Tt, ∀ht−1. (Capacity)
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We impose some standard restrictions on allocations– allocation probabilities must lie between 0
and 1 at all histories, and no buyer is allotted more than one unit.

0 ≤ aτ,t(ht) ≤ 1 ∀ht, ∀τ ≤ t. (Feas1)

cτ,t−1(ht−1) = 1 =⇒ aτ,t(ht−1, rτ) = 0 ∀ht−1, ∀τ ≤ t, ∀rτ (Feas2)

Finally, the incentive compatibility (IC) conditions, i.e. that a buyer is incentivized to report his
true type. We break these into two parts– IC for impatient buyers and IC for patient buyers. This
is useful because impatient buyers cannot report themselves as patient. In this sense, their space
of reports is identical to bidders in the literature on (static) auction design:

v(rt)At(ht−1, rt)− Pt(ht−1, rt) ≥ v(rt)At(ht−1, r′t)− Pt(ht−1, r′t) ∀ht−1, ∀rt, r′t ∈ Ti
t, (IC-I)

v(rt)At(ht−1, rt)− Pt(ht−1, rt) ≥ v(rt)At(ht−1, r′t)− Pt(ht−1, r′t) ∀ht−1, ∀rt ∈ T
p
t , r′t ∈ Tt. (IC-P)

We can now write down the problem the seller must solve:

max
a,P

∑
t

Eht Pt(ht) (Expected Revenue)

subject to (IR), (Capacity), (Feas1), (Feas2), (IC-I), (IC-P).

The main difficulty in solving the above problem analytically is in determining which of the
above constraints bind. In most single dimensional mechanism design problems, the approach
is as follows. The objective function is first maximized by focusing only on local downward IC
constraints, that is, the only constraints that are imposed is that the agent should not want to report
her type as one lower. It is then shown that the solution to this relaxed problem also satisfies
global IC. We too will employ this approach. However, agents in our problem have a second
dimension of private information– their patience. This results in a large number of IC constraints.
In the next section, we will show that due to the structure of our dynamic problem, ‘most’ of
the new constraints can be relaxed. The only IC constraints corresponding to patience that need
to be considered are those of a patient buyer of the highest possible value (v) reporting himself as
impatient.

3. THE RELAXED APPROACH AND MAIN RESULT

In this section, we present our main result. As mentioned above, the optimal mechanism is
hard to solve for as there are a large number of constraints. We thus approach the problem in
three steps. We first argue that the space over which optimization is being done can be reduced by
eliminating the prices and only focusing on allocation probabilities. This technique is standard in
mechanism design. Second, we then define a relaxed problem with only a subset of the constraints
in the original. This is the main challenge as classical static mechanism design does not inform
on which constraints are important in dynamic problems with multidimensional private informa-
tion. We then derive the solution to the relaxed problem. Since our actual problem contains more
constraints than the relaxed problem, if the solution to the latter is feasible in the original problem
then it must be the solution we are seeking. We now provide a sketch of this argument, details are
in the appendix.

7



DEB AND PAI

3.1. Solving the Seller’s Problem

We begin by showing that the space over which optimization is being conducted can be re-
duced. First, the following lemma argues that it is without loss of generality to restrict attention
to allocation rules which only allot to patient buyers at the last period T. This lemma was shown
by [6].

LEMMA 1 (Allot at Exit). It is without loss of generality to only consider allocation rules where patient
buyers are only considered for allotment in the final period (impatient buyers must, by definition, be con-
sidered for allotment only in their arrival period).

Loosely speaking, the intuition for this lemma is the following. Any other feasible allocation
rule can be converted to an allot-at-exit rule by simply moving the allocation for patient buyers
to the last period. The seller has no incentive to allocate to patient buyers earlier- by waiting
till the final period T, the seller has the most possible information and therefore can make better
allocation decisions, while patient buyers are indifferent between receiving the good earlier or
later. Therefore the seller weakly prefers allot-at-exit rules. This lemma simplifies the problem
since it implies that at′,t(ht) = 0, whenever t′ ≤ t < T and x(rt′(ht)) = p.

Buyers in our model can simultaneously misreport both values and patience. It is easy to see
therefore that our IC constraints, (IC-I) and (IC-P) can equivalently be written as two constraints.
The first considers misreports of value by a buyer (while correctly reporting patience), while the
second considers patient buyers misreporting as impatient (while correctly reporting their value).
It is easy to see that if these two constraints are satisfied, incentive compatibility with respect to
‘double-misreports,’ i.e. a buyer misreporting his value and his patience is satisfied for free:

v(rt)At(ht−1, rt)− Pt(ht−1, rt) ≥ v(rt)At(ht−1, r′t)− Pt(ht−1, r′t) rt, r′t ∈ Tx
t , x ∈ {i, p} (IC-Value)

v(rt)At(ht−1, rt)− Pt(ht−1, rt) ≥ v(rt)At(ht−1, r′t)− Pt(ht−1, r′t) rt ∈ T
p
t , r′t = (v(rt), t, i)

(IC-Patience)

Since (IC-Value) is a standard incentive compatibility condition from single dimensional mecha-
nism design, we can use it to eliminate payment variables Pt(·, ·) from the seller’s problem. The
following lemma expresses this formally.

LEMMA 2 (Revenue Equivalence). For any interim allocation rule A, there exists P satisfying (IC-Value)
if and only if A is monotone in value, i.e.

∀t, ht−1, v, x ∈ {i, p} : At(ht−1, (v, t, x)) ≤ At(ht−1, (v + 1, t, x)). (Value Monotonicity)

Further, if A satisfies (Value Monotonicity), the maximum possible P is:

∀t, ht−1, v, x ∈ {i, p} : Pt(ht−1, (v, t, x)) = vA(ht−1, (v, t, x))−
v−1

∑
ν=1

A(ht−1, (ν, t, x)). (Payments)

Lemma 1 implies that the interim allocations are simply At(ht−1, (v, t, i)) = at,t(ht−1, (v, t, i))
and At(ht−1, (v, t, p)) = EhT [at,T(hT)|(ht−1, (v, t, p))], and allows us to eliminate a whole set of a’s.
Lemma 2 then allows us to eliminate all the P’s from the objective function and the constraints. In
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particular, note that when P is given by (Payments), (IR) is satisfied. Further, (IC-Value) is replaced
by (Value Monotonicity), while (IC-Patience) can be rewritten as:

v−1

∑
v=1

At(ht−1, (v, t, p)) ≥
v−1

∑
v=1

At(ht−1, (v, t, i)) ∀t, ht−1, v. (IC-Patience2)

Finally, substituting P into the objective function, and changing the order of summation, we have
the analog of the celebrated virtual value formula:

∑
t

Eht Pt(ht) = ∑
t

Eht−1
Ert Pt(ht−1, rt) =∑

t
Eht−1

Ert

[
v(rt)At(ht−1, rt)−

v(rt)−1

∑
v=1

At(ht−1, (v, t, x(rt)))

]
=∑

t
Eht−1

Ert

[
ϕt(rt)At(ht−1, rt)

]
. (Expected Revenue2)

Here,

ϕt(rt) =

 v− 1−Fi
t (v)

f i
t (v)

if rt = (v, t, i),

v− 1−Fp
t (v)

f p
t (v)

if rt = (v, t, p).
(Virtual Value)

Therefore the seller’s problem can be rewritten as:

max
a ∑

t
Eht−1

Ert

[
ϕt(rt)At(ht−1, rt)

]
,

s.t. (ValueMonotonicity), (IC− Patience2), (Capacity), (Feas1), (Feas2).

The ‘problematic’ constraints are (IC-Patience2). Without further guidance, we do not know which
of these constraints bind in the optimal solution- and there is 1 constraint corresponding to each
value v after each history. To further understand the structure of the optimal contract, the follow-
ing lemma is helpful.

LEMMA 3. Suppose for some time t and history ht−1, there exists some v? such that

At(ht−1, (v, t, i)) =

{
0 if v < v?,
1 if v > v?.

(Zero-One A)

Then (IC-Patience2) is satisfied at ht−1 for v if and only if satisfied for all v ≤ v. Therefore it is sufficient to
consider the seller’s problem with (IC-Patience2) for value v at each history ht−1.

PROOF. The if direction is trivial, we only need to show the only if direction. To see this, suppose
that for some v′ ≤ v, (IC-Patience2) is violated or:

v′−1

∑
v=1

At(ht−1, (v, t, p)) <
v′−1

∑
v=1

At(ht−1, (v, t, i)),

However from the former inequality, At(ht−1, (v′ − 1, t, i)) > 0. By the assumption of the lemma,
therefore, At(ht−1, (v, t, i)) = 1 for all v ≥ v′. By definition, At(ht−1, (v, t, p)) ≤ 1. Therefore:

v−1

∑
v=1

At(ht−1, (v, t, p)) 6≥
v−1

∑
v=1

At(ht−1, (v, t, i)). �
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Intuitively the assumption of Lemma 3 is satisfied if impatient buyers face posted prices- in this
case all values below the posted price get an allocation probability of 0, while all values above
gthe posted price get the good for sure 1. In this case, the Lemma shows that the only patience
misreport we need be concerned with is the highest possible value patient buyer misreporting as
impatient. Roughly speaking, the reason is that all A’s are probabilities- therefore they must lie
between 0 and 1. If for some other value v′ < v, (IC-Patience2) is violated, it will also be violated
for v since A(ht−1, (v, t, i)) = 1 ≥ A(ht−1, (v, t, p)) for any v > v′.

This simple insight allows us to greatly reduce the number of constraints considered– we only
need to (IC-Patience2) constraints corresponding to each history ht−1 and the highest possible
value v.

Our final step simply involves taking a relaxation of each of these constraints to the objective
function. We will only give a heuristic sketch here, the formal proof is left in the appendix (i.e.
verifying that a relaxation approach works for this setting etc.). Since there will be one constraint
for each history ht−1, let us denote the corresponding dual variable by η(ht−1). Collecting terms,
the problem can be written as:

max
a ∑

t
Eht−1

Ert

[
ϕM

t (rt, ht−1)At(ht−1, rt)
]

, (Relaxed OPT)

s.t. (ValueMonotonicity), (Capacity), (Feas1), (Feas2).

Here,

ϕM
t (rt, ht−1) =

 v− 1−Fi
t (v)

f i
t (v)

− η(ht−1)

f i
t (v)

if rt = (v, t, i),

v− 1−Fp
t (v)

f p
t (v)

+ η(ht−1)

f p
t (v)

if rt = (v, t, p).
(Modified VV)

Note that in the absence of (Value Monotonicity), the solution to problem (Relaxed OPT) can be
computed by a dynamic stochastic knapsack algorithm where the ‘weight’ of a buyer reporting rt

at history ht−1 is given by ϕM
t (rt, ht−1). In the appendix, we show that the maintained regularity

assumption on the distribution, Definition 1, implies that the output of the dynamic stochastic
knapsack algorithm satisfies both (Zero-One A) and (Value Monotonicity).

To roughly see why, note that at any stage before the final period, the algorithm trades off the

current weight v − 1−Fi
t (v)

f i
t (v)

− η(ht−1)

f i
t (v)

with the expected incremental value from one extra unit in

the future, ∆ f (ht). Condition (3) of Definition 1 implies that v− 1−Fi
t (v)

f i
t (v)

− η(ht−1)

f i
t (v)

is increasing in
v, implying (Value Monotonicity) and (Zero-One A) for impatient buyers. In the final period,
the algorithm will assign the remaining goods to the highest non-negative ϕMs among patient
buyers. It follows that conditions (1) and (2) of Definition 1 implies (Value Monotonicity) for
patient buyers.

3.2. Main Result

We can summarize the argument above into our main result, which characterizes the form of
the optimal mechanism. Importantly, the optimal mechanism can be “implemented” in a simple
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and transparent way. This implies that the mechanism is straightforward enough to allow un-
sophisticated buyers to purchase optimally. This is critical for utilizing a mechanism in practice
as it has been shown that even reasonably sophisticated bidders do not understand the rules of
complex mechanisms (such as the Vickrey auction).

PROPOSITION 1. The seller’s optimal mechanism can be described as follows– as buyers arrive, they are
asked to declare whether they are patient or impatient. An impatient buyer is offered a posted price (a take
it or leave it offer at price). Patient buyers are invited to bid in an auction that will clear in the final period.
The auction need not be a ‘standard’ auction, i.e. the highest bidder need not win the good. Buyers who bid
in different periods will be treated differently, even if their distributions are the same (i.e. f p

t = f p
t′ ).

4. DISCUSSION & CONCLUDING REMARKS

As we mentioned earlier, prior to this work, the main approaches to ironing in a dynamic set-
ting were computational. These approaches identified that the ‘problematic’ constraints were (IC-
Patience2). However, in the absence of a counterpart to Lemma 3, this approach instead imposes
the stronger constraint: At(ht−1, (v, t, p)) ≥ At(ht−1, (v, t, i)) for each v. This (stronger) constraint
is easier to work with. When considering allotting the good to buyer (v, t, i) at time t after history
ht−1, the seller ‘looks ahead’ in his dynamic program to whether he would have allotted the good
to the buyer, had the buyer instead been of type (v, t, p) (an exact look-ahead is often too taxing
computationally, so Monte Carlo simulations are used). If not, the algorithm allots to neither and
therefore ensures that the stronger monotonicity constraint is satisfied.

By contrast, our mechanism is provably optimal if the correct η’s are known. Indeed once
the η’s are known, a dynamic stochastic knapsack with ϕM as the weights will output the optimal
mechanism. Efficient algorithms to find η(·) are beyond the scope of this paper. In simple settings,
such as the case of 2 time periods, there is a single η which can be found by binary search up
to a desired tolerance (note that 0 ≤ η ≤ 1). However, for even the case of 3 time periods,
naïve approaches are computationally forbidding. Given the importance and relevance of the
problem at hand, we hope that this will spur further work characterizing how to efficiently find
(or approximate) the optimal η’s, and leave it as an open question.

EXTENSIONS. The main assumption in this paper is on buyers’ patience– each buyer is either
completely impatient or completely patient. Generalizing this to allow a buyer in period t to have
any deadline t ≤ t̄ ≤ T is non-trivial. If the buyer has a deadline of t̄, t < t̄ < T, then from his
perspective in period t, he faces a random price in t̄. This is because the price will depend on
the other arrivals between t and t̄. We therefore lose the structure provided by Lemma 3, which
allows us to relax most of the (IC-Patience) constraints. This in turn makes characterization of the
optimal mechanism difficult. We leave this as an open question.
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